Cfd Methodology and Validation for Single-phase Flow in Pwr Fuel Assemblies

نویسندگان

  • Michael E. Conner
  • Emilio Baglietto
  • Abdelaziz M. Elmahdi
چکیده

This paper presents the CFD modeling methodology and validation for steady-state, normal operation in a PWR fuel assembly. This work is part of a program that is developing a CFD methodology for modeling and predicting single-phase and two-phase flow conditions downstream of structural grids that have mixing devices. The purpose of the mixing devices (mixing vanes in this case) is to increase turbulence and improve heat transfer characteristics of the fuel assembly. The detailed CFD modeling methodology for single-phase flow conditions in PWR fuel assemblies was developed using the STAR-CD CFD code. This methodology includes the details of the computational mesh, the turbulence model used, and the boundary conditions applied to the model. The methodology was developed by benchmarking CFD results versus small-scale experiments. The experiments use PIV to measure the lateral flow field downstream of the grid, and thermal testing to determine the heat transfer characteristics of the rods downstream of the grid. The CFD results and experimental data presented in the paper provide validation of the single-phase flow modeling methodology. Two-phase flow CFD models are being developed to investigate two-phase conditions in PWR fuel assemblies, and these can be presented at a future CFD Workshop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-scale Thermal-hydraulic Analysis of Pwrs Using the Cupid Code

Recent advances in computational fluid dynamics (CFD) codes along with high performance computing hardware made the codes more useful in many engineering applications. For instance, single-phase CFD codes have long been used to predict the fluid flow in fuel channels of a pressurized water reactor (PWR) [1, 2]. Considering the current affordable number of computation mesh is a little below one ...

متن کامل

Numerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells

A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...

متن کامل

Validation of Cfd Models for Mono- and Polydisperse Air-water Two-phase Flows in Pipes

Many flow regimes in Nuclear Reactor Safety (NRS) Research are characterized by multiphase flows, where one of the phases is continuous and the other phase consists of gas or vapor of the liquid phase. The validation of the CFD multiphase flow models against detailed experimental data for simplified flow configurations is a basic requirement for the accurate prediction of more complex flows, li...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Generalization of a CFD Model to Predict the Net Power in PEM Fuel Cells

Qualitatively, it is known that the reactants content within the catalyst layer (CL) is the driving moments for the kinetics of reaction within the CL. This paper aimed to quantitatively express the level of enhancement in electrical power due to enrichment in the oxygen content. For a given MEA, a flow field (FF) designer is always willing to design a FF to maximize the content of oxygen in al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008